Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 3.248
Filter
Add filters

Year range
1.
Pediatric Dermatology ; 40(Supplement 1):24, 2023.
Article in English | EMBASE | ID: covidwho-20245450

ABSTRACT

Background: Lichen planus (LP) is an inflammatory disorder believed to result from CD8+ cytotoxic T-cell (CTL) mediated autoimmune reactions against basal keratinocytes. We present a review of LP following COVID-19 infection and vaccination. Method(s): Literature searches were conducted on PubMed and Google Scholar from 2019 to 7/2022. 35 articles were selected based on subject relevance, and references within articles were also screened. Result(s): 39 cases of post-vaccination LP and 6 cases of post-infection LP were found among case reports and case series. 150 cases of postvaccination LP and 12 cases of post-infection LP were found in retrospective and prospective studies. Conclusion(s): LP is a rare complication of COVID-19 infection and vaccination that may be mediated by overstimulation of T-cell responses and proinflammatory cytokine production. However, it does not represent a limitation against COVID-19 vaccination, and the benefits of vaccination considerably outweigh the risks.

2.
Cytotherapy ; 25(6 Supplement):S245-S246, 2023.
Article in English | EMBASE | ID: covidwho-20245241

ABSTRACT

Background & Aim: With larger accessibility and increased number of patients being treated with CART cell therapy, real-world toxicity continues to remain a significant challenge to its widespread adoption. We have previously shown that allogeneic umbilical cord blood derived (UCB) regulatory T cells (Tregs) can resolve uncontrolled inflammation and can treat acute and immune mediated lung injury in a xenogenic model as well as in patients suffering from COVID-19 acute respiratory distress syndrome. The unique properties of UCB Tregs including: i) lack of plasticity when exposed to inflammatory micro-environments;ii) no requirement for HLA matching;iii) long shelf life of cryopreserved Tregs;and iv) immediate product availability for on demand treatment, makes them an attractive source for treating acute inflammatory syndromes. Therefore, we hypothesized that add-on therapy with UCB derived Tregs may resolve uncontrolled inflammation responsible for CART cell therapy associated toxicity. Methods, Results & Conclusion(s): UCB Tregs were added in 1:1 ratio to CART cells, where no interference in their ability to kill CD19+ Raji cells, was detected at different ratios : 8:1 (80.4% vs. 81.5%);4:1 (62.0% vs. 66.2%);2:1 (50.1% vs. 54.7%);1:1 (35.4% vs. 44.1%) (Fig 1A). In a xenogenic B cell lymphoma model, multiple injections of Tregs were administered after CART injection (Fig 1B), which did not impact distribution of CD8+ T effector cells (Fig 1C) or CART cells cells (Fig 1D) in different organs. No decline in the CAR T levels was observed in the Tregs recipients (Fig 1E). Specifically, no difference in tumor burden was detected between the two arms (Fig 2A). No tumor was detected in CART+Tregs in liver (Fig 2B) or bone marrow (Fig 2C). A corresponding decrease in multiple inflammatory cytokines in peripheral blood was observed in CART+Tregs when compared to CART alone (Fig 2D). Here we show "proof of concept" for add-on therapy with Tregs to mitigate hyper-inflammatory state induced by CART cells without interference in their on-target anti-tumor activity. The timing of Tregs administration after CART cells have had sufficient time for forming synapse with tumor cells allows for preservation of their anti-tumor cytotoxicity, such that the infused Tregs home to the areas of tissue damage to bind to the resident antigen presenting cells which in turn collaborate with Tregs to resolve inflammation. Such differential distribution of cells allow for a Treg "cooling blanket" and lays ground for clinical study. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

3.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20244991

ABSTRACT

With the success of mRNA vaccines during the COVID-19 pandemic and CAR T-cell therapies in clinical trials, there is growing opportunity for immunotherapies in the treatment of many types of cancers. Lentiviral vectors have proven effective at delivery of genetic material or gene editing technology for ex vivo processing, but the benefits and promise of Adeno-associated virus (AAV) and mRNA tools for in vivo immunotherapy have garnered recent interest. Here we describe complete synthetic solutions for immuno-oncology research programs using either mRNA-vaccines or virus-mediated cell and gene engineering. These solutions optimize workflows to minimize screening time while maximizing successful research results through: (1) Efficiency in lentiviral packaging with versatility in titer options for high-quality particles. (2) A highthroughput viral packaging process to enable rapid downstream screening. (3) Proprietary plasmid synthesis and preparation techniques to maintain ITR integrity through AAV packaging and improve gene delivery. (4) Rapid synthesis, in vitro transcription, and novel sequencing of mRNA constructs for complete characterization of critical components such as the polyA tail. The reported research demonstrates a streamlined approach that improves data quality through innovative synthesis and sequencing methodologies as compared to current standard practices.

4.
Annals of the Rheumatic Diseases ; 82(Suppl 1):148, 2023.
Article in English | ProQuest Central | ID: covidwho-20244727

ABSTRACT

BackgroundUpadacitinib (UPA) is an oral JAK inhibitor (JAKi) approved for the treatment of RA. JAKi have been associated with an elevated risk of herpes zoster (HZ) in patients (pts) with RA. The adjuvanted recombinant zoster vaccine (RZV, Shingrix) was shown to be well-tolerated and effective in preventing HZ in adults aged ≥ 50 years.[1] The efficacy and safety of RZV have not been studied in pts with RA while on UPA in combination with MTX.ObjectivesTo assess the immunogenicity of RZV in pts with RA receiving UPA 15 mg once daily (QD) with background MTX.MethodsEligible adults aged ≥ 50 years with RA enrolled in the ongoing SELECT-COMPARE phase 3 trial (NCT02629159) received two RZV doses, administered at the baseline and week (wk) 12 visits. Pts should have been on stable doses of UPA 15 mg QD and background MTX for ≥ 8 wks before the first vaccination and ≥ 4 wks after the second vaccination. Antibody titers were collected pre-vaccination (baseline), 4 wks post-dose 1 vaccination (wk 4), and 4 wks post-dose 2 vaccination (wk 16). The primary endpoint was the proportion of pts with a humoral response to RZV defined as ≥ 4-fold increase in pre-vaccination concentration of anti-glycoprotein E [gE] titer levels at wk 16. Secondary endpoints included humoral response to RZV at wk 4 and the geometric mean fold rise (GMFR) in anti-gE antibody levels at wks 4 and 16. Cell-mediated immunogenicity to RZV was an exploratory endpoint evaluated by the frequencies of gE-specific CD4+ [2+] T cells (CD4+ T cells expressing ≥ 2 of 4 activation markers: IFN-γ, IL-2, TNF-α, and CD40 ligand) measured by flow cytometry at wks 4 and 16 in a sub-cohort of pts.ResultsOf the 95 pts who received ≥ 1 RZV dose, 93 (98%) received both RZV doses. Pts had a mean (standard deviation) age of 62.4 (7.5) years. The median (range) disease duration was 11.7 (4.9–41.6) years and duration of UPA exposure was 3.9 (2.9–5.8) years. At baseline, all but 2 pts were receiving concomitant MTX and half (50%) were taking an oral corticosteroid (CS) at a median daily dose of 5.0 mg. One pt discontinued UPA by wk 16. Blood samples were available from 90/93 pts. Satisfactory humoral responses to RZV occurred in 64% (95% confidence interval [CI]: 55–74) of pts at wk 4 and 88% (81–95) at wk 16 (Figure 1). Age (50–< 65 years: 85% [95% CI: 75–94];≥ 65 years: 94% [85–100]) and concomitant CS (yes: 87% [77–97];no: 89% [80–98]) use at baseline did not affect humoral responses at wk 16. GMFR in anti-gE antibody levels compared with baseline values were observed at wks 4 (10.2 [95% CI: 7.3–14.3]) and 16 (22.6 [15.9–32.2]). Among the sub-cohort of pts, nearly two-thirds achieved a cell-mediated immune response to RZV (wk 4: n = 21/34, 62% [95% CI: 45–78];wk 16: n = 25/38;66% [51–81]). Within 30 days post-vaccination of either RZV dose, no serious adverse events (AEs) (Table 1) or HZ were reported. AEs that were possibly related to RZV were reported in 17% of pts. One death occurred more than 30 days after wk 16 due to COVID-19 pneumonia.ConclusionMore than three-quarters (88%) of pts with RA receiving UPA 15 mg QD on background MTX achieved a satisfactory humoral response to RZV at wk 16. In a subgroup of pts, two-thirds (66%) achieved a cell-mediated immune response to RZV at wk 16. Age and concomitant CS use did not negatively affect RZV response.Reference[1]Syed YY. Drugs Aging. 2018;35:1031–40.Table 1. Safety Results Through 30-Days Post-RZV Vaccination in UPA-Treated PatientsEvent, n (%)UPA 15 mg QD (N = 95)Any AE38 (40%)AE with reasonable possibility of being related to UPAa13 (14%)AE with reasonable possibility of being related to RZVa16 (17%)Severe AEb1 (1%)Serious AE0AE leading to discontinuation of UPA0Death0AE, adverse event;QD, once daily;RZV, adjuvanted recombinant zoster vaccine;UPA, upadacitinib.aAs assessed by the investigator.bHypersensitivity.AcknowledgementsAbbVie funded this study and participated in the study design, research, analysis, data collection, interpretation of data, review, and approval of the . All authors had access to relevant data and participated in the drafting, review, and approval of this publication. No honoraria or payments were made for authorship. Medical writing support was provided by Julia Zolotarjova, MSc, MWC, of AbbVie.Disclosure of InterestsKevin Winthrop Consultant of: AbbVie, AstraZeneca, BMS, Eli Lilly, Galapagos, Gilead, GSK, Novartis, Pfizer, Regeneron, Roche, Sanofi, and UCB, Grant/research support from: AbbVie, AstraZeneca, BMS, Eli Lilly, Galapagos, Gilead, GSK, Novartis, Pfizer, Regeneron, Roche, Sanofi, and UCB, Justin Klaff Shareholder of: AbbVie, Employee of: AbbVie, Yanxi Liu Shareholder of: AbbVie, Employee of: AbbVie, CONRADO GARCIA GARCIA: None declared, Eduardo Mysler Speakers bureau: AbbVie, Amgen, AstraZeneca, BMS, Eli Lilly, GlaxoSmithKline, Pfizer, Roche, and Sandoz, Consultant of: AbbVie, Amgen, AstraZeneca, BMS, Eli Lilly, GlaxoSmithKline, Pfizer, Roche, and Sandoz, Alvin F. Wells Consultant of: AbbVie, Amgen, BMS, Eli Lilly, Novartis, Pfizer, and Sanofi, Xianwei Bu Shareholder of: AbbVie, Employee of: AbbVie, Nasser Khan Shareholder of: AbbVie, Employee of: AbbVie, Michael Chen Shareholder of: AbbVie, Employee of: AbbVie, Heidi Camp Shareholder of: AbbVie, Employee of: AbbVie, Anthony Cunningham Consultant of: GSK, Merck Sharp & Dohme, and BioCSL/Sequirus.

5.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20244368

ABSTRACT

Bivalent COVID-19 vaccines that contain two mRNAs encoding Wuhan-1 and Omicron BA.4/5 spike proteins are successful in preventing infection from the original strain and Omicron variants, but the quality of adaptive immune responses is still not well documented. This study aims at characterizing adaptive immune responses to the bivalent booster vaccination in 46 healthy participants. Plasma and PBMC were collected prior and three weeks after bivalent booster. We measured anti-N, anti-S, and RBD IgM, IgA, IgG plasma titers against original, Omicron BA.1, and BA.5 variants (pending) as well as total anti-S IgG titers and surrogate Virus Neutralization capacity against the Alpha, Delta, and BA.1 variant. With spectral flow-cytometry we identified peripheral blood B-cells specific for the RBD of the S-protein of the original and BA.1 variants. T-cell-specific responses were assessed by cytokine release assay after stimulation with SARS-CoV-2 peptides from the original, BA.1, BA.4, and BA.5 variants (pending). Finally, we performed TRB and IGH repertoire studies on sorted CD4+, CD8+, CD19+ lymphocytes, to study breadth of SARS-CoV-2 specific clonotypes (pending). 27/46 participants were analyzed;9 had SARS-CoV-2 infection (COVID+), while 18 are infection naive (COVID-). In both groups, median time since last dose of SARS-CoV-2 vaccine (3rd or 4th) was 11 months. All subjects were positive for anti-S IgG prior to bivalent booster. The COVID + group displayed anti-S IgG pre-booster levels and neutralization against BA.1 higher than the COVID- group. Significant increase post-boost of total anti-S IgG and BA.1 neutralizing activity was detected in the COVID- but not in the COVID+ group;however, no difference in neutralization activity post-boost was detected between the two groups. Furthermore, the COVIDgroup showed significant increase in the frequency of CD19+ and CD27+ switched memory B-cells specific for BA.1 RBD in post-boost compared to pre-boost samples. However, post-boost frequencies of the same B-cells were higher in the COVID+ compared to the COVID- group. These preliminary findings confirm that among individual immunized with the original COVID-19 mRNAvaccine, prior COVID infection provides increased protection against SARS-CoV-2 variants. They also demonstrate that booster immunization with the bivalent vaccine induces robust adaptive immune responses against Omicron variant.[Formula presented][Formula presented]Copyright © 2023 Elsevier Inc.

6.
Proceedings of 2023 3rd International Conference on Innovative Practices in Technology and Management, ICIPTM 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20244238

ABSTRACT

This paper used regression and moderation approaches to evaluate the student's satisfaction with informatics towards the hybrid learning in their study. Multiple Linear Regression (MLR) identified student satisfaction based on hybrid learning difficulty and benefit ($p < 0.001$). Linear Regression (LR) found hybrid learning benefits impacted the student's satis-faction significantly $(p < 0.001$). Student's $t$-test also revealed that Overall Satisfaction (OS) significantly affected hybrid learning's satisfaction ($p < 0.001$). Analysis of Co-variants (ANCOVA) also proved that hybrid learning's benefit ($p < 0.001$) and OS ($p < 0.05$) significantly influenced student satisfaction. The paper also proved that hybrid learning's benefits positively correlate with student satisfaction (0.596). The slopes of 'Yes' and 'No' are substantially different from one another when the probability value of 0.22 $(p > 0.05$). Hence, no moderator (OS) affects the relationship's strength between the benefit and satisfaction of hybrid learning. The paper also revealed that hybrid learning's difficulty has a negative correlation (-.18), and the benefit of hybrid learning is positively associated with student satisfaction (.66). Implementing a hybrid learning mode during Covid-19 periods significantly impacted student satisfaction and the decision taken by the administration was also meaningful. © 2023 IEEE.

7.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243743

ABSTRACT

Ionizable amino lipids are a major constituent of the lipid nanoparticles for delivering nucleic acid therapeutics (e.g., DLin-MC3-DMA in ONPATTRO , ALC-0315 in Comirnaty , SM-102 in Spikevax ). Scarcity of lipids that are suitable for cell therapy, vaccination, and gene therapies continue to be a problem in advancing many potential diagnostic/therapeutic/vaccine candidates to the clinic. Herein, we describe the development of novel ionizable lipids to be used as functional excipients for designing vehicles for nucleic acid therapeutics/vaccines in vivo or ex vivo use in cell therapy applications. We first studied the transfection efficiency (TE) of LNP-based mRNA formulations of these ionizable lipid candidates in primary human T cells and established a workflow for engineering of primary immune T cells. We then adapted this workflow towards bioengineering of CAR constructs to T cells towards non-viral CAR T therapy. Lipids were also tested in rodents for vaccine applications using self-amplifying RNA (saRNA) encoding various antigens. We have then evaluated various ionizable lipid candidates and their biodistribution along with the mRNA/DNA translation exploration using various LNP compositions. Further, using ionizable lipids from the library, we have shown gene editing of various targets in rodents. We believe that these studies will pave the path to the advancement in nucleic acid based therapeutics and vaccines, or cell gene therapy agents for early diagnosis and detection of cancer, and for targeted genomic medicines towards cancer treatment and diagnosis.

8.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243635

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a fatal pandemic viral disease caused by the severe acute respiratory syndrome corona virus type-2 (SARS-CoV-2). The aim of this study is to observe the associations of IL-6, SARS-COV-2 viral load (RNAemia), IL- 6 gene polymorphism and lymphocytes and monocytes in peripheral blood with disease severity in COVID-19 patients. This study was carried out from March 2021 to January 2022. RT-PCR positive 84 COVID-19 patients and 28 healthy subjects were enrolled. Blood was collected to detect SARS-COV-2 viral RNA (RNAemia) by rRT-PCR, serum IL-6 level by chemiluminescence method, SNPs of IL-6 by SSP-PCR, immunophenotyping of lymphocytes and monocyte by flow cytometry. Serum IL-6 level (pg/ml) was considerably high among critical patients (102.02 +/- 149.7) compared to severe (67.20 +/- 129.5) and moderate patients (47.04 +/- 106.5) and healthy controls (3.5 +/- 1.8). Serum SARS-CoV-2 nucleic acid positive cases detected mostly in critical patients (39.28%) and was correlated with extremely high IL-6 level and high mortality (R =.912, P < 0.001). Correlation between IL-6 and monocyte was statistically significant with disease severity (severe group, p < 0.001, and 0.867*** and critical group p < 0.001 and 0.887***). In healthy controls, moderate, severe and critically ill COVID-19 patients, IL-6 174G/C (rs 1800795) GG genotype was 82.14%, 89.20%, 67.85% and 53.57% respectively. CC and GC genotype had strong association with severity of COVID-19 when compared with GG genotype. Significant statistical difference found in genotypes between critical and moderate groups (p < 0.001, OR-10.316, CI-3.22-23.86), where CC genotype was associated with COVID-19 severity and mortality. The absolute count of T cell, B cell, NK cell, CD4+ T cells and CD8+ T cells were significantly decreased in critical group compared to healthy, moderate and severe group (P < 0.001). Exhaustion marker CD94/NKG2A was increased on NK cells and CD8+ cytotoxic T cell among critical and severe group. Absolute count of monocyte was significantly increased in critical group (P < 0.001). Serum IL-6, IL-6 174 G/C gene and SARS-CoV-2 RNAaemia can be used in clinical practice for risk assessment;T cell subsets and monocyte as biomarkers for monitoring COVID-19 severity. Monoclonal antibody targeting IL-6 receptor and NKG2A for therapeutics may prevent disease progression and decrease morbidity and mortality.Copyright © 2023 Elsevier Inc.

9.
Annals of the Rheumatic Diseases ; 82(Suppl 1):58, 2023.
Article in English | ProQuest Central | ID: covidwho-20243576

ABSTRACT

BackgroundFollowing the launch of the global COVID-19 vaccination campaign, there have been increased reports of autoimmune diseases developing de novo following vaccination. These cases include rheumatoid arthritis, autoimmune hepatitis, immune thrombotic thrombocytopenia, and connective tissue diseases. Nevertheless, COVID-19 vaccines are considered safe for patients with autoimmune diseases and are strongly recommended.ObjectivesThe aim of this in silico analysis is to investigate the presence of protein epitopes encoded by the BNT-162b2 mRNA vaccine, one of the most commonly administered COVID-19 vaccines, that could elicit an aberrant adaptive immune response in predisposed individuals.MethodsThe FASTA sequence of the protein encoded by the BNT-162b2 vaccine was retrieved from http://genome.ucsc.edu and used as a key input to the Immune Epitope Database and Analysis Resource (www.iedb.org). Linear peptides with 90% BLAST homology were selected, and T-cell, B-cell, and MHC ligand assays without MHC restriction were searched and evaluated. HLA-disease associations were screened on the HLA-SPREAD platform (https://hla-spread.igib.res.in) by selecting only positive markers.ResultsA total of 183 epitopes were found, corresponding to 178 SARS-CoV-2 and 5 SARS-CoV spike epitopes, respectively. Results were obtained from 22 T-cell assays, 398 B-cell assays, and 2 MHC ligand assays. Complementary receptors included 1080 T-cell receptors and 0 B-cell receptors.Specifically, the IEDB_epitope:1329790 (NATNVVIKVCEFQFCNDPFLGVYY) was shown to bind to HLA-DRB1*15:02 and HLA-DRB1*15:03 alleles, whereas the IEDB_epitope:1392457 (TKCTLKSFTVEKGIYQTSNFRVQPT) was reported to bind to HLA-DRB1*07:01, HLA-DRB1*03:01, HLA-DRB3*01:01, and HLA-DRB4*01:01 alleles. The HLA alleles detected were found to be positively associated with various immunological disorders (Table 1).Table 1.MHC-restricted epitopes of the BNT-162b2 vaccine and potentially associated immunological conditionsEpitopeAssayMHC moleculeAssociated disease (population)NATNVVIKVCEFQFCNDPFLGVYY + OX(C10)cellular MHC/mass spectrometry ligand presentationHLA-DRB1*15:02Takayasu arteritis (Japanese) Arthritis (Taiwanese) Scleroderma (Japanese) Colitis (Japanese)HLA-DRB1*15:03Systemic lupus erythematosus (Mexican American)TKCTLKSFTVEKGIYQTSNFRVQPT + SCM(K2)as aboveHLA-DRB1*07:01Allergy, hypersensitivity (Caucasian)HLA-DRB1*03:01Type 1 diabetes (African) Sarcoidosis, good prognosis (Finnish)HLA-DRB3*01:01Graves' disease (Caucasian) Thymoma (Caucasian) Sarcoidosis (Scandinavian) Autoimmune hepatitis (Caucasian)HLA-DRB4*01:01Vitiligo (Saudi Arabian)ConclusionSimilar to the SARS-CoV-2 spike protein, the protein product of the BNT-162b2 mRNA vaccine contains immunogenic epitopes that may trigger autoimmune phenomena in predisposed individuals. Genotyping for HLA alleles may help identify at-risk individuals. However, further research is needed to elucidate the underlying mechanisms and potential clinical implications.References[1]Vita R, Mahajan S, Overton JA et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019 Jan 8;47(D1):D339-D343. doi: 10.1093/nar/gky1006.[2]Dholakia D, Kalra A, Misir BR et al. HLA-SPREAD: a natural language processing based resource for curating HLA association from PubMed s. BMC Genomics 23, 10 (2022). https://doi.org/10.1186/s12864-021-08239-0[3]Parker R, Partridge T, Wormald C et al. Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Rep. 2021 May 25;35(8):109179. doi: 10.1016/j.celrep.2021.109179.[4]Knierman MD, Lannan MB, Spindler LJ et al. The Human Leukocyte Antigen Class II Immunopeptidome of the SARS-CoV-2 Spike Glycoprotein. Cell Rep. 2020 Dec 1;33(9):108454. doi: 10.1016/j.celrep.2020.108454.Acknowledgements:NIL.Disclosure of InterestsNone Declared.

10.
Acta Haematologica Polonica ; 54(2):51-52, 2023.
Article in English | EMBASE | ID: covidwho-20243353
11.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243277

ABSTRACT

Glioblastoma is an extremely aggressive and difficult cancer to treat, which may partly be due to its limited ability to induce T-cell responses. However, combining viral vector vaccines with other therapies to generate tumor-specific T cells may provide a meaningful benefit to patients. Here, we investigated whether heterologous prime-boost vaccination with chimpanzee-derived adenoviral vector ChAdOx1 and modified vaccinia Ankara (MVA) vaccines could generate therapeutically effective CD8+ T-cell responses against a model antigen P1A, a mouse homolog of human tumorassociated Melanoma Antigen GenE (MAGE)-type antigens, expressed by a BGL-1 mouse glioblastoma cell line. We demonstrated that heterologous prime-boost vaccination with ChAdOx1/MVA vaccines targeting P1A generated a high magnitude of CD8+ T cells specific for the P1A35-43 epitope presented by the MHC class I molecule H-2Ld . Prophylactic vaccination with ChAdOx1/MVA-P1A significantly prolonged the survival of syngeneic mice subcutaneously challenged with P1A-expressing BGL-1 tumors. Furthermore, different vaccination schedules significantly impact the magnitude of antigen-specific CD8+ T-cell responses and may impact protective efficacy. However, the substantial induction of myeloid-derived suppressor cells (MDSCs) by this tumor model presents a significant challenge in the therapeutic setting. Future work will investigate the efficacy of this vaccination strategy on intracranial P1A-expressing BGL-1 models.

12.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243258

ABSTRACT

Background: People living with cancer are reported to be at increased risk of hospitalization and death following infection with acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This is proposed to be dependent on a combination of intrinsic patient and cancer factors such as cancer subtype, and emerging SARS-CoV-2 variants with differing pathogenicity. However, COVID-19 phenotype evolution across the pandemic from 2020 has not yet been systematically evaluated in cancer patients. Method(s): This study is a population-scale real-world evaluation of Coronavirus outcomes in the United Kingdom for cancer patients from 1st November 2020-31st August 2022. The cancer cohort comprises individuals from Public Health England's national cancer dataset, excluding individuals less than 18 years old. Case-outcome rates, including hospitalization, intensive care and casefatality rates were used to assess the evolution in disease phenotype of COVID-19 in cancer patients. Multivariable logistic regression models were fitted to compare risk of Coronavirus outcomes in the cancer cohort relative to the non-cancer population during the Omicron wave in 2022. Result(s): The cancer cohort comprised of 198,819 positive SARS-CoV-2 tests from 127,322 individual infections. Coronavirus case-outcome rates were evaluated by reference to 18,188,573 positive tests from 15,801,004 individual infections in the non-cancer population. From 2020 to 2022, the SARS-CoV-2 disease phenotype became less severe in both patients with cancer and the non-cancer population, though cancer patients remain at higher risk. In 2022, the relative risk of Coronavirus hospital admission, inpatient hospitalization, intensive care admission and mortality in cancer patients was 3.02x, 2.10x, 2.53x and 2.54x compared to the non-cancer population following multivariable adjustment, respectively. Higher risk of hospital admission and inpatient hospitalization were associated with receipt of B/T cell antibody and/or targeted therapy which also corresponded with an increased risk of Coronavirus mortality. Conclusion(s): The disease phenotype of SARS-CoV-2 in cancer patients in 2022 has evolved significantly from the disease phenotype in 2020. Direct effects of the virus in terms of SARS-CoV-2 hospitalization, intensive care and case fatality rates have fallen significantly over time. However, relative to the general population, people living with cancer and hematological malignancies remain at elevated risk. In order to mitigate the indirect effects of the SARS-CoV-2 pandemic in terms of disruption to cancer care, there should be increased focus on preventative measures. Used in conjunction with vaccination and early treatment programs, this will maximize quality of life for those with cancer during the ongoing pandemic and ensure the best cancer outcomes.

13.
European Journal of Human Genetics ; 31(Supplement 1):635-636, 2023.
Article in English | EMBASE | ID: covidwho-20243246

ABSTRACT

Background/Objectives: Corticosteroids are widely used for the treatment of coronavirus disease (COVID)-19 caused by SARS-CoV- 2 as they attenuate the immune response with their antiinflammatory properties. Genetic polymorphisms of glucocorticoid receptor, metabolizing enzymes or transporters may affect treatment response to dexamethasone. The aim of this study was to evaluate the association of polymorphisms in glucocorticoid pathway with disease severity and duration of dexamethasone treatment in COVID-19 patients. Method(s): Our study included 107 hospitalized COVID-19 patients treated with dexamethasone. We isolated DNA from peripheral blood and genotyped all samples for polymorphisms in NR3C1 (rs6198, rs33388), CYP3A4 (rs35599367), CYP3A5 (rs776746), GSTP1 (rs1695, rs1138272), GSTM1/GSTT1 deletions and ABCB1 (1045642, rs1128503, rs2032582 Fisher's and Mann- Whitney tests were used in statistical analysis. Result(s): The median (min-max) age of the included patients was 62 (26-85) years, 69.2 % were male and 30.8 % female and they had moderate (1.9 %), severe (83 %) or critical (15.1 %) disease. NR3C1 rs6198 polymorphism was associated with more severe disease in additive genetic model (P = 0.022). NR3C1 rs6198, ABCB1 rs1045642 and ABCB1 rs1128503 polymorphisms were associated with a shorter duration of dexamethasone treatment in additive (P = 0.048, P = 0.047 and P = 0.024, respectively) and dominant genetic models (P = 0.015, P = 0.048 and P = 0.020, respectively), while carriers of the polymorphic CYP3A4 rs35599367 allele required longer treatment with dexamethasone (P = 0.033). Other polymorphisms were not associated with disease severity or dexamethasone treatment duration. Conclusion(s): Genetic variability of glucocorticoid pathway genes was associated with the duration of dexamethasone treatment of COVID-19 patients.

14.
Sustainability ; 15(10), 2023.
Article in English | Web of Science | ID: covidwho-20243194

ABSTRACT

In recent years, the concentration levels of various air pollutants have been constantly increasing, primarily due to the high vehicle flow. In 2020, however, severe lockdowns in Greece were imposed to reduce the spread of the COVID-19 pandemic, which led to a rapid reduction in the concentration levels of air pollutants such as PM2.5 and PM10 in the atmosphere. Initially, this paper seeks to identify the correlation between the concentration levels of PM10 and the traffic flow by acquiring data from low-cost IoT devices which were placed in Thessaloniki, Greece, from March to August 2020. The correlation and the linearity between the two parameters were further investigated by applying descriptive analytics, regression techniques, Pearson correlation, and independent T-testing. The obtained results indicate that the concentration levels of PM10 are strongly correlated to the vehicle flow. Therefore, the results hint that the decrease in the vehicle flow could result in improving the quality of environmental air. Finally, the acquired results point out that the temperature and humidity are weakly correlated with the concentration levels of PM10 present in the atmosphere.

15.
Journal of Mycology and Infection ; 28(1):16-18, 2023.
Article in English | EMBASE | ID: covidwho-20242667
16.
British Journal of Haematology ; 201(Supplement 1):74, 2023.
Article in English | EMBASE | ID: covidwho-20242614

ABSTRACT

Introduction: Combination of daratumumab (Dara) and lenalidomide (Len) may enhance the function of teclistamab (Tec), potentially resulting in improved antimyeloma activity in a broader population. We present initial safety and efficacy data of Tec-Dara- Len combination in patients with multiple myeloma (MM) in a phase 1b study (MajesTEC-2;NCT04722146). Method(s): Eligible patients who received 1-3 prior lines of therapy (LOT), including a proteasome inhibitor and immune-modulatory drug, were given weekly doses of Tec (0.72-or- 1.5 mg/kg with step-up dosing) + Dara 1800 mg + Len 25 mg. Responses per International Myeloma Working Group criteria, adverse events (Aes) per CTCAE v5.0, and for cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) per ASTCT guidelines, were assessed. Result(s): 32 patients received Tec-Dara- Len (0.72 mg/kg, n = 13;1.5 mg/kg, n = 19). At data cut-off (11 July 2022), median follow-up (range) was 5.78 months (1.0-10.4) and median treatment duration was 4.98 months (0.10-10.35). Median age was 62 years (38-75);87.5% were male. Median prior LOT was 2 (1-3), 18.8% were refractory to Dara and 28.1% refractory to Len. CRS was most frequent AE (81.3% [n = 26], all grade 1/2), 95% occurred during cycle1. Median time to onset was 2 days (1-8), median duration was 2 days (1-22). No ICANS were reported. Frequent Aes (>=25.0% across both dose levels) were neutropenia (75.0% [n = 24];grade 3/4: 68.8% [n = 22]), fatigue (43.8% [n = 14];grade 3/4: 6.3% [n = 2]), diarrhoea (37.5% [n = 12];all grade 1/2), insomnia (31.3% [n = 10];grade 3/4: 3.1% [n = 1]), cough (28.1% [n = 9];all grade 1/2), hypophosphatemia (25.0% [n = 8];all grade 1/2), and pyrexia (25% [n = 8];grade 3/4: 6.3% [n = 2]). Febrile neutropenia frequency was 12.5% (n = 4). Infections occurred in 24 patients (75.0%;grade 3/4: 28.1% [n = 9]). Most common were upper respiratory infection (21.9% [n = 7]), COVID-19 (21.9% [n = 7]), and pneumonia (21.9% [n = 7]). Three (9.4%) had COVID-19 pneumonia. One (3.1%) discontinued due to COVID-19 infection and this patient subsequently died of this infection. Overall response rate (ORR, median follow-up) was 13/13 (8.61 months) at 0.72 mg/kg and 13/16 evaluable patients (less mature at 4.17 months) at 1.5 mg/kg. 12 patients attained very good/better partial response at 0.72 mg/kg dose, and response was not mature for 1.5 mg/kg group. Median time to first response was 1.0 month (0.7-2.0). Preliminary pharmacokinetic concentrations of Tec-Dara- Len were similar as seen with Tec monotherapy. Tec-Dara- Len- treatment led to proinflammatory cytokine production and T-cell activation. Conclusion(s): The combination of Tec-Dara- Len has no new safety signals beyond those seen with Tec or Dara-Len individually. Promising ORR supports the potential for this combination to have enhanced early disease control through the addition of Tec. These data warrant further investigation.

17.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(8 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20242368

ABSTRACT

The TG6002.03 trial is a dose-escalation phase 1 clinical trial of TG6002 infusion via the hepatic artery in patients with liver-dominant colorectal cancer metastases. TG6002 is an engineered Copenhagen strain oncolytic Vaccinia virus, deleted of thymidine kinase and ribonucleotide reductase to enhance tumor selective viral replication and expressing FCU1, an enzyme converting the non-cytotoxic prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). In this trial, patients with advanced unresectable liver-dominant metastatic colorectal cancer who had failed previous oxaliplatin and irinotecan-based chemotherapy were treated with up to 2 cycles of TG6002 infusion 6 weeks apart via the hepatic artery on day 1 combined with oral 5-FC on days 5 to 14 (where day 1 = TG6002 infusion). TG6002 infusion was performed over 30 minutes via selective catheterization of the hepatic artery proper. 5-FC oral dosing was 50mg/kg x4 daily. Blood was sampled for TG6002 pharmacokinetics and 5-FC and 5-FU measurements. Sampling of liver metastases was performed at screening and on day 4 or day 8 for virus detection and 5-FC and 5-FU quantification. In total, 15 patients (median age 61 years, range 37-78) were treated in 1 UK centre and 2 centres in France and received a dose of TG6002 of 1 x 106 (n=3), 1 x 107 (n=3), 1 x 108 (n=3), or 1 x 109 pfu (n=6). Fourteen of the 15 patients received a single cycle of treatment, including one patient who did not received 5-FC, and one patient received two cycles. TG6002 was transiently detected in plasma following administration, suggesting a strong tissue selectivity for viral replication. In the highest dose cohort, a virus rebound was observed on day 8, concordant with replication time of the virus. In serum samples, 5-FU was present on day 8 in all patients with a high variability ranging from 0.8 to 1072 ng/mL and was measurable over several days after initiation of therapy. Seven of the 9 patients evaluable showed the biodistribution of the virus in liver lesions by PCR testing on day 4 or day 8. Translational blood samples showed evidence for T-cell activation and immune checkpoint receptor-ligand expression. At 1 x 109 pfu, there was evidence for T-cell proliferation and activation against tumour-associated antigens by ELISpot and for immunogenic cell death. In terms of safety, a total of 34 TG6002-related adverse events were reported, of which 32 were grade 1-2 and 2 were grade 3. The maximum tolerated dose was not reached, and a single dose-limiting toxicity was observed consisting of a myocardial infarction in a context of recent Covid-19 infection in a 78-year-old patient. These results indicate that TG6002 infused via the hepatic artery in combination with oral 5-FC was well tolerated, effectively localized and replicated in the tumor tissues, expressed its therapeutic payload and showed anti-tumoral immunological activity.

18.
Annals of the Rheumatic Diseases ; 82(Suppl 1):578, 2023.
Article in English | ProQuest Central | ID: covidwho-20242313

ABSTRACT

BackgroundAnti-MDA5 antibody positive dermatomyositis (MDA5-DM) is characterized by high mortality due to rapid progressive ILD. MDA5 is a cytosolic protein and a family of RIG-I like receptor, which functions as a virus RNA sensor and induces the production of such as type-1 IFN. Although little is known about the pathogenesis of MDA5-DM, it is notable that the similarities were reported between COVID-19 infection and MDA5-DM. It may suggest that there is a common underlying autoinflammatory mechanism. We reported that in MDA5-DM, (1) RIG-I-like receptor signaling is enhanced and (2) antiviral responses such as type 1 IFN signaling are also enhanced as compare with anti-ARS-antibody positive DM, and (3) the key for survival is suppression of RIG-I-like and IFN signaling (EULAR2022, POS0390). We also found that a significant role for uncontrolled macrophage in the pathogenesis of ILD by our autopsy case. Recently, it has been reported that tacrolimus (TAC) and cyclophosphamide (CY) combination therapy (TC-Tx) has improved the prognosis of cases with early onset of the disease, but there are cases that cannot be saved. Therefore, we devised BRT therapy (BRT-Tx). The Tx combines baricitinib (BAR), which inhibits GM-CSF and IFN-mediated signaling and effectively suppresses uncontrolled macrophages, with rituximab (RTX) and TAC, which rapidly inhibits B and T cell interaction and ultimately prevents anti-MDA5 antibody production.ObjectivesTo determine the differences in gene expression between BRT and TC-Tx for MDA5-DM in peripheral blood.MethodsTotal of 6 MDA5-DM (TC: 3, BRT: 3) were included and all of them had multiple poor prognostic factors. Peripheral whole blood was collected at just before and 2-3 months after the treatment. RNA was extracted, and quantified using a next-generation sequencer. Differentially Expressed Genes (DEGs) were identified by pre vs. post treatment. Gene Ontology (GO), clustering and Gene Set Variation Analysis (GSVA) were performed to DEGs. As one BRT case was added since our last year's report, we also reanalyzed the surviving vs. fatal cases. The IFN signature was scored separately for Types 1, 2, and 3, and the changes between pre- and post-treatment were investigated.ResultsTwo of three cases with TC died during treatment, while all three cases on BRT recovered. The cluster analysis of the DEGs separated deaths from survivors, not by type of treatment. Comparing surviving and dead cases, GO analysis revealed that the immune system via immunoglobulins and B cells was significantly suppressed in surviving cases. GO analysis of DEGs in each therapeutic group showed that expression of B cell-related genes such as lymphocyte proliferation and B cell receptor signaling pathway were significantly suppressed in BRT-Tx. On the other hand, TC-Tx significantly suppressed such pathways as cell proliferation and cell surface receptor signaling, and was less specific for the target cells than BRT-Tx. The changes in IFN signature score after treatment showed an increase in type 2 and 3 IFN scores in all fatal cases and an increase in type 1 IFN score in one fatal case.ConclusionBRT-Tx significantly suppressed gene expression associated with B cells, while TC-Tx was characterized by low specificity of therapeutic targets and suppression of total cell proliferation. Comparison of surviving and dead cases revealed that the combination of RTX contributed to the success of treatment, as suppression of the immune system mediated by immunoglobulins and B cells is the key for survival. Analysis of the IFN signature revealed an increase in IFN score after treatment in fatal cases, indicating that the combination of BAR is beneficial. The superiority of BRT-Tx seems clear from the fact that all patients survived with BRT-Tx while only one/three patients survived with TC-Tx.REFERENCES:NIL.Acknowledgements:NIL.Disclosure of InterestsMoe Sakamoto: None declared, Yu Nakai: None declared, Yoshiharu Sato: None declared, Yoshinobu Koyama Speakers bureau: Abbvie, Asahikasei, Ayumi, BMS, Esai, Eli-Lilly, Mitsubishi Tanabe, Grant/research support from: Abbvie, GSK.

19.
Journal of Population Therapeutics and Clinical Pharmacology ; 30(3):E258-E264, 2023.
Article in English | Web of Science | ID: covidwho-20241859

ABSTRACT

COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has threatened every civilian as a global pandemic. The immune system poses the critical interactive chain between the human body and the virus. The current study aimed to assessment whether comorbidity with type 2 diabetes (T2D) affects the immunological response in COVID-19 patients. This case-control study (comparative) was carried out in Baghdad Al-karkh hospitals/ isolation units for Patients covid19, which included 90 subjects from November 2021 to the end of April 2022, as of which 30 participants were with T2D patients, 30 were T2D patients suffer of covid-19, with positive RTPCR for covid-19 and the remaining 30 were nondiabetic (NDM) of aged (50-85) years. To study Ferritin, D-dimer, HbA1c, blood urea(BU), and serum creatinine . The current study showed a significant increase in IL-6 (362.4 +/- 60.01pg/ml), IL-2R beta (8.8 +/- 2.7%), PCT (205 +/- 25.7mg/dl), T2D with COVID-19 patients compared to the control group ( 222.8 +/- 30.7pg/ml, 4.6 +/- 1.3%, 99 +/- 15.1mg/dl, 35 +/- 9.6mg/dl, 0.65 +/- 0.03mg/dl respectively, at the probability value (P<0.05). The COVID-19 patients comorbid with T2D demonstrated distinguishable immunological parameters, which represented clinical relevancies with the predisposed disease severity in T2D.

20.
American Journal of Reproductive Immunology ; 89(Supplement 1):40, 2023.
Article in English | EMBASE | ID: covidwho-20241541

ABSTRACT

Problem: COVID-19 placentitis is a rare complication of maternal SARS-CoV-2 respiratory infection associated with serious adverse obstetric outcomes, including intra-uterine death. The precise role of SARS-CoV-2 in COVID-19 placentitis is uncertain, as trophoblast infection is only observed in around one-half of the affected placenta. Method of Study: Through multi-omic spatial profiling, including Nanostring GeoMX digital spatial profiling and Lunaphore COMET multiplex IHC, we provide a deep characterization of the immunopathology of placentitis from obstetrically complicated maternal COVID-19 infection. Result(s):We show that SARS-CoV-2 infection of placental trophoblasts is associated with a distinct innate and adaptive immune cell infiltrate, florid cytokine expression and upregulation of viral restriction factors. Quantitative spatial analyses reveal a unique microenvironment surrounding virus-infected trophoblasts characterizedd by multiple immune evasion mechanisms, including immune checkpoint expression, cytotoxic T-cell exclusion, and interferon blunting. Placental viral loads inversely correlated with the duration of maternal infection consistent with progressive virus clearance, potentially explaining the absence of virus in some cases. Conclusion(s): Our results demonstrate a central role for placental SARS-CoV-2 infection in driving the unique immunopathology of COVID-19 placentitis.

SELECTION OF CITATIONS
SEARCH DETAIL